(Y^3+5y^2-2y+24)/y-2=0

Simple and best practice solution for (Y^3+5y^2-2y+24)/y-2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (Y^3+5y^2-2y+24)/y-2=0 equation:



(^3+5Y^2-2Y+24)/Y-2=0
Domain of the equation: Y!=0
Y∈R
We multiply all the terms by the denominator
(^3+5Y^2-2Y+24)-2*Y=0
We add all the numbers together, and all the variables
(^3+5Y^2-2Y+24)-2Y=0
We get rid of parentheses
5Y^2-2Y-2Y+24+^3=0
We add all the numbers together, and all the variables
5Y^2-4Y=0
a = 5; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·5·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*5}=\frac{0}{10} =0 $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*5}=\frac{8}{10} =4/5 $

See similar equations:

| 1/4(2y+3)=3(1|3y) | | 15x-7-14x=3 | | 1/4x+18=16 | | 5x-(-4)=19 | | 8(2x+5)-9x=-3(x-4)-2 | | 2x^2+36x+108=0 | | -9y=20+4 | | a-1.5=42 | | 3z+1/5=4z+4/5 | | 4x+3/5=3x-5/3 | | n^2-3n+1=-n^2 | | 6(3y-4)/5=6 | | 1/1+4/y=11/12y | | -4(x-5)-29=9 | | 2m^2+5m+4=5+4m | | 7+2x5=17 | | -2/3=-1/2x-6/7 | | X/12=2y | | (6x6)x-8x=4x | | x-9=70x | | 3+91x=52+12 | | (X-4)*9x=0 | | 16-4x=8x+16 | | 2/3x+6=x+5 | | 5(p+7)=60 | | -21=-21z | | -2x+2+3x=14-33 | | 10x-21=-18 | | 4(p+7)=60 | | 15x-8=3x-68 | | 25/12=25+x/33 | | 5n+6n=14 |

Equations solver categories